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Abstract—For solution of hydrodynamic stability problems the 

evolutionary method is offered. The essence of this method consists 

that an arbitrary initial disturbance is described by one wave with the 

greatest increment on large times, which varies according to the law 

( )exp i . In order to verify the new method and to work out the 

numerical scheme the stability calculations were carried out also on 

the base of the classical theory. The evolutionary method is used to 

study the effects of the gas injection direction through a porous 

surface on stability of a supersonic boundary layer at the Mach 

number M=2. Results of the evolutionary method coincide with data 

of the classical theory very well.  

The boundary layer receptivity process due to the interaction of 

three-dimensional slow acoustic disturbances is numerically 

investigated at a free stream Mach number of 2.0. Problem is solved 

in the linear approximation relatively excited disturbances by an 

acoustic wave. Numerical simulations were conducted with using the 

program complex Ansys. In general, matching the results of the 

approximate method (based on stability equations for low-frequency 

fluctuations) with direct numerical simulation data is satisfactory. 

Normalized solutions on the corresponding maxima of the velocity 

perturbations amplitudes are coincided well enough about a wall. The 

greatest discrepancy occurs in the area of the boundary layer edge 

where the approximation theory is inapplicable. 

 

Keywords— supersonic boundary layer, establishing method, 

acoustic waves, interaction, receptivity, numerical simulations  

I. INTRODUCTION 

his  paper is the extended version of the presentation at 

the 12th International conference on applied and 

theoretical mechanics (Prague, March 18-20, 2016) which was  

published in [1].  

The problems on the hydrodynamic stability and the 

interaction of a supersonic boundary layer with acoustic waves 

which are considered in the present paper were raised mainly 

in connection with the problem on the turbulence formation. 

Transition from laminar to turbulent state in shear flows occurs 

due to evolution of different disturbances inside the shear 

layer. Though there are several mechanisms and routes to go 
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from a laminar to a turbulent state, most of them generally 

follow these fundamental processes: receptivity, linear 

instability, nonlinear instability and breakdown to turbulence. 

Here the first two problems will be considered: the linear 

instability, and the receptivity of a supersonic boundary layer 

to the external acoustic waves. 

As for the linear instability of a supersonic boundary layer it 

was solved by many authors. A detailed review of their works 

can be found in [2-4].  It is necessary to notice that, as a rule, 

all authors use the standard method of elementary waves 

leading to the solution of the eigenvalue problem of the 

homogeneous system of ordinary differential equations with 

homogeneous boundary conditions. The lack of this method is 

in the difficulty to find the waves with the highest increment.  

Its search comes to the end successfully under a condition if its 

approximate value is known. Therefore, growing in time waves 

given the front direction and wave number, depending on the 

incoming values of main flow, such as Mach number, 

Reynolds number and others, are calculated on the base of 

small changes of determinative parameters. However, the wave 

with the maximum increment for some basic terms will not be 

the determinative one (with a maximum growth factor), for the 

other flow parameters. Therefore, it is desirable to have such a 

calculation method which would guarantee uniquely obtaining 

of the wave with the highest increment. For linear problems, 

this can be achieved by an evolutionary method by the 

integration over time of partial differential equations. Because 

any disturbance, satisfying uniform boundary conditions can 

be decomposed into the sum of the waves with different 

increments, the wave with the largest increment will dominate 

at large times. This method can be called by the usual term - 

the establishing method. In contrast to the generally accepted 

method of establishing when the solution goes to the constant, 

in our case the solution goes to the exponential dependence on 

time. In the hydrodynamic stability theory there are the 

temporary instability (wave number on uniform spatial 

coordinates are real) and the spatial instability (when 

perturbations with real frequencies growth in the space). At 

low amplification rate in the space and time, which is 

characteristic for the boundary layers, temporal and spatial 

increments are associated with the simple approximate 

relation: the amplification rate in space equals the negative 

temporary divided by the wave group velocity [2]. If 

necessary, the more precise value of the spatial amplification 

rate can be obtained by the classical method. In this paper 
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theoretically investigates the influence of the direction of the 

blowing gas through a porous surface on the stability of a 

supersonic boundary layer using the classical method of 

elementary waves and evolutionary method.   

At present the most complex problem on the prediction of 

the transition position in the boundary layer flows is related to 

the receptivity of these flows to the external effects. This 

problem was discussed in detail for the first time in [5]. A 

review of the early works of the acoustic field effect on the 

transition from a laminar supersonic boundary layer to the 

turbulent one has been given in [2]. The problems on the 

supersonic flow aeroacoustics were studied mainly within the 

framework of the investigations on the conditions for the onset 

of auto-oscillations and sound generation by the supersonic 

shear flows in the jets and mixing layers. The advanced 

approach based on the idea of the possibility of the mutual 

influence of the acoustic and hydrodynamic waves has been 

demonstrated in [6].  

The first attempts to investigate the interaction of the sound 

waves and supersonic boundary layer on the basis of the 

stability theory were undertaken in [7,8]. The problem on the 

excitation of unstable waves by sound was considered in [9]. 

The interaction of sound with a supersonic boundary layer 

experimentally was studied in [10 ̶ 11] where the main results 

of theory [8] were confirmed.  

In [12] the theory of interaction of external high-frequency 

acoustics of small amplitudes with a supersonic boundary layer 

on the basis of the linear equations of hydrodynamic stability 

is stated in detail. Its essence consists in the assumption that an 

acoustic wave length differs from a boundary layer thickness a 

little. Then in the first approximation the main flow current in 

a stationary boundary layer can be accepted as plane-parallel 

flow. The problem is reduced to integration of the ordinary 

differential equations which coefficients depend only on the 

longitudinal speed and temperature in a stationary flow. At 

finite incidence angle from the solution of stability equations it 

is possible to receive a distribution of the disturbance 

amplitude in a boundary layer excited by an acoustic wave and 

a reflection coefficient. At an approach of the incidence angle 

to zero the wave vector of an external acoustic wave becomes 

parallel to a streamline surface. This acoustic wave was called 

a longitudinal wave. For a longitudinal wave in approach of a 

parallel flow it isn't possible to construct the limited solution 

outside the boundary layer excluding the case of the low 

frequency, when the pressure disturbance inside the boundary 

layer practically does not depend on the normal coordinate. 

For more information on this subject can be found in [13].  

Due to that within parallel main flow it isn't possible to 

solve the problem on an excitation of disturbances in a 

boundary layer by a longitudinal sound wave, it is necessary to 

simulate this process on the basis of the full Navier-Stokes 

equations. This method allows obtain detailed information 

about the perturbation that is difficult in experimental studies. 

Now the direct numerical modeling of stationary and non-

stationary flows is successfully applied. The detailed review of 

existing methods of Computational Fluid Dynamics is 

available in [14]. 

In [15] the direct numerical simulation (DNS) was used for 

a study of resonant interactions of waves at Mach number 

M=4.5. In [16] other types of disturbances in the running 

stream (slow acoustic, entropy and vorticity waves) are 

considered. The numerical simulation of a hypersonic 

boundary layer receptivity to fast and slow acoustic waves at 

M = 6 is carried out in [17]. In [18] calculations of the 

boundary layer receptivity to fast and slow acoustic waves 

with M=4.5 carried out. Calculation and experimental studies 

of a hypersonic shock layer receptivity to acoustic disturbance 

at M = 21 have been conducted in [19]. All this studies were 

carried out only for the interaction of boundary layer with 2D 

acoustic waves. Apparently, there is a single work [20] which 

solved the interaction problem of 3D acoustic monochromatic 

waves with boundary layer. However in it only the case with 

the fixed sliding angle relative to the front edge of the plate 

was considered. 

Therefore in this paper along with the solution of a stability 

problem researches on interaction of acoustic waves of 

different sliding angles with the supersonic boundary layer at 

Mach number M=2.0 are conducted. 

II. BASIC EQUATIONS 

The gas flow is described by the known Navier - Stokes, 

continuity, energy and state equations [9]:  

      
*

* * * * *d 2
= - grad - grad div +2Div(μ S)

dt 3
p 

v
v ,               
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* * 2

* * 2 * *

*
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2
2 div
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div grad ,
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dT dp
c S

dt dt

c T

Pr

  



   

  
  

  
  

v

 

*
* *( ) 0

d
div

dt


 v , 

* * *p RT  

Here 
*

v  –velocity with components  * * *, ,u v w  in   , ,x y z  − 

directions, 
* * *, ,p T − pressure, density and temperature, Pc  

– specific heat at constant pressure, R − gas constant, S − 

velocity tensor,
* */pPr c   , 

* − thermal conductivity, 

* − dynamic viscosity. 

III. THE BOUNDARY LAYER STABILITY WITH 

VECTORED INJECTION 

A. The stability theory of plane-parallel flows 

In this paper we will explore the disturbance in supersonic 

boundary layers on a flat plate at high Reynolds numbers 
* * */xRe u x    , where * * *, ,u      - velocity, density and 

dynamic viscosity in a free flow , x - distance from the front 

edge of the plate to researched area. In this case, the main flow 
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is independent on the transverse, z-coordinate, weakly 

dependent from x-coordinate and velocity in y - direction is 

low. Therefore, the main (stationary) flow can be considered 

for a plane-parallel, depending only on y , only the velocity in 

the x-direction  *u y is unequal to zero.  

If to introduce the dimensionless coordinates, time, and 

parameters of  flow in the form: /dX dx  , /dY dy  , 

/dZ dz  , * /d u dt  , * */v v u  , * */p p p , 

* */T T T , * */    where * * */x u      - the 

thickness of the boundary layer, the velocity, density, pressure 

and temperature of the compressible gas in the boundary layer 

can be represented in the form: 

 u U Y u   , v v  , w w  ,  p P Y p   , 

 0T T Y    ,  01/ T Y    , 

   0, ,U Y P T Y  – velocity, pressure, and temperature in the 

unperturbed laminar boundary layer. Flow parameters 

disturbances which depend on , ,X Y Z   and   are marked by 

the prime. 

Equations for linear disturbances in the approximation of 

Dana-Lin [3] and Alekseev [23] in the two-dimensional 

boundary layer have the form: 

 

2

2 2
0

1 1u u U p u
U v

T Y X Y X ReM Y



  

        
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
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 

          
       
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
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The system (1) is solved with the boundary conditions, [2]: 

0u v w      , at 0,Y   .                              (2) 

B. The classical stability theory 

The classical stability theory is founded on the method of 

elementary waves      , , π expp Y i X Z     a a . 

In this case, vector components ( , , , , ) f h  a – amplitudes 

of perturbations , , ,  , . u v w       Equations (1) are given to 

system of the linear ordinary differential equations: 

 
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1 dU i f
i U c f
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dY ReM dY
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and the conditions (2) to the view: 

0f      at   0,Y   .                                   (4) 

Wave numbers   and   are real at the temporary 

instability and a frequency   is complex-valued, which is a 

result of solving the eigenvalue problem of stability of 

homogeneous equations with homogeneous boundary 

conditions. The flow in the boundary layer is unstable for 

positive values of the imaginary part of r ii    . 

In general, the number of eigenvalues is infinite, or at least 

large. However, we are interested primarily frequency with the 

highest values of the imaginary part. The search such 

frequencies is a challenge. 

C. The evolutionary method 

Basic equations. In this work for the first time for finding 

of such frequencies the evolutionary method is offered and 

realized. The essence of this approach is that the random 

assignment of initial data but sufficiently large , 

perturbations with the largest increments will prevail, which 

vary according to the law ( )exp i . 

For disturbances of the type    , , expa X Y i Z  a  

equations (1) and boundary conditions (2) take the form: 
2
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     0, 0, 0, (0, ) 0f h         . 

The computational domain and the numerical scheme. 

The problem was solved for the periodic perturbation in the 

coordinate  x , i.e.  , , ( , , )Y X Y X L  a a . The region of an 

integration in the normal direction was enclosed interval 

0<Y<Y
*
. We took into account the conditions of equality to 

zero disturbances at Y
*
. Value Y 

*
 was accepted rather large 

that its additional increase did not lead to essential change of 

disturbances increments.  

For the integration of the system (5) we used 2-step finite-

difference scheme [24]: 

 

1 1 11

2 2 22
0 1 1

2

1 1
0

2

2

π π
,

2

n n nn
n

n ii i

y

n n
j j

x

f f fTf f
U

Re h

T

hM






  

 

 

 



   






 

1 1 11

2 2 22
0 0 1 1

2 2

2
 

n n nn
nn

ii i

y

h h hi T Th h

ReM h

  



  

 



 
  


, 

 
1

2 1 1
0

2

π π

2

n n n
n

i i

y

T

hM

 




 




 


,                             (6а)     

 

1

2

0

1 11 1

0

1

1
,

2 2

n
n

n

n nn n
i ij j n

x y

d

dY T

f f
i h

T h h




 





  

 
   

  

 
   
  
 

 

 

1

2
1 1 1 1

0

1 1 1

2 2 2
0 1 1

02

1
2 2

2
,

n n n n nn
j j n i i

x y

n n n

nii i

y

f f
T i h

h h

T
T

PrRe h

  
 

  




   

  

 

  
      
 
 

 
 

 

1 1 1

2 2 2
0π P r ρ θ T/ / /

n n n  

  . 

The second step: 
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The scheme is absolutely stable, the approximation order 

is  2 2, ,x yO h h . Values , , , , ,  f r h   on the ( 1n ) layer were 

obtained from the each equation in the appropriate order. 

Unknown values at the boundary were obtained by 

interpolating on three neighboring points.  

The value    was determined by the formula: 

1

2

n N

n
ln

iN






 
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. Calculations were performed as long 

until it was constant with the acceptable accuracy. In this case 

the real or imaginary part    , ,  c cq XY  were changed as the 

   , , ,, , sinr i r i r iq Y X a X    . The value of 2 /n L  , 

where n- number of periods stacked on the calculating range L.  

IV. BOUNDARY LAYER EQUATIONS  

In self-similar variables boundary layer equations have the 

form [25]: 

0
d dU dU

g
dY dY dY


 

  
 

,
02

dg U

dY T
  

 
2

20 0 1 0
dT dTd dU

g M
dY Pr dY dY dY


 

   
      

  
, 

Here /p VC C   - ratio of specific teats, * /M u a    - 

Mach number and a - sound velocity at the boundary layer 

edge. At a uniform gas blowing through a wall at an angle λ to 

the main flow direction the velocity components on a wall are 

defined as follows:  0V Gsin ,  0U Gcos . Because 

   0 0 / wg V Re T  , [2],  0 / wg GResin T  . Introducing 

the parameter /q wC GRe T  , characterizing the intensity of 

the blowing or suction through the surface, the boundary 

conditions on thermally insulated surface can be written as: 

(0) qg C sin , (0) /w qU T C cos Re , 0 (0) 0
dT

dY
 ;     

 0( ) ( ) 1;T U     

The dependence of *  on temperature was adopted in 

accordance with the Sutherland's law, which in dimensionless 

form can be written as follows: 

 

3/2
*

* * *

*

*
0

*
0

)( s

s

T T
T

T T

T

T
  





  
  

   

, 

where Ts - Sutherland's constant. In wind tunnels without 

heating at a constant stagnation temperature *
stT , 

  * * 2/ 1 1stT T M    .  

V. THE BOUNDARY LAYER INTERACTION WITH ACOUSTIC 

WAVES 

Scheme of an interaction of the sliding along the surface of 

monochromatic sound waves with the boundary layer of the 

streamline surface (plate) is shown in Fig. 1. Wave front 

section which is parallel to normal coordinate y is represented 

by the letter S. Wave vector of the sound wave  with 

projections α and β on x and z respectively is parallel to the 
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plane (x, z). Velocity of the running flow is parallel to an axis x 

and is perpendicular the planes (y, z).  The figure shows a 

conditional boundary layer, its thickness δ and the sliding 

angle ( / )hi arctg   .  The acoustic wave is periodic on z 

with period  2 /z    and on x with period 2 /x   . 

Thus, the external parameters of the acoustic wave is changed 

by law: 0 cos( )i iq q x z t     , were 0
iq  - oscillation 

amplitude, ω – angular frequency. Problem is solved in the 

linear approximation relatively excited disturbances by an 

acoustic wave. 

 

A. The approximate theory 

  Parameters of external sliding acoustic waves have the 

view: 

    ( , , , ) , , π , exp ,  0u w p T f h i X Z v      
      

Here , ,    - wave numbers and frequency. In the two-

dimensional boundary layer on a solid plate, in a parallel flow 

approximation and small wave numbers   (low frequency 

waves) the perturbation amplitudes in a boundary layer is 

described by a system of ordinary differential equations, [2]: 

 
2

2 2
0

1 dU i f
i U c f

T

d

dY ReM dY

 
 

 

 
    

 
,     

 
2

2 2
0

1
 

i h
i U c h

T ReM

d

dY

 


 

   , 

 
0 0

1 1
0

d d
i U c i f i h

dY T T dY


    

   
        

  
, 

 

 

0

2

2

1

1 ,

dT
i U c

T dY

d
i f i h

dY PrRe d

d

Y

  

  
  

 
   

 

 
    

 

   

 0 0/ / 0,    π / P T ζ θ / Tdp dy d dY     . 

For sliding waves 2 21 ( ) / ( )Mc      . 

The conditions on the solid surface are 0f h      . 

At Y=∞ f∞ =1, /h    ,
2 2( ) /M      , 

   2 2

2 2

1 /

( )

1eM  

 




 
 


, φ∞= const. 

Distributions of the perturbations amplitude and constant φ∞ 

are determined from the solution of the differential equations 

with given boundary conditions. 

B. The direct numerical simulation 

The evolution of disturbances in the layer was simulated 

numerically using the ANSYS Fluent software package.  

 
In Fig. 2 the computational domain is shown. The flow 

irection is shown in fig. 1. The height of the parallelogram AE 

was selected to avoid of the interaction of shock waves, which 

forms in the leading edge vicinity of the plate due to viscous-

inviscid interaction, with the top side (EHGF). The width AD 

is taken equal to the wavelength in z-direction  = 2 /z   . 

On an entrance (side AEHD) and on the top side flow 

parameters are set which are composed of the stationary part 

and parameters of a sound wave: 
* * * cos( )p p Ap x z t         

 * * * 1
cos( )T T AT x z t


  


 


      

*
* * cos( )cos( )

RT
u u A hi x z t  




      

*
* sin( )cos( )

RT
v A hi x z t  


   ,  

where A is  a dimensionless pressure amplitude. 

The Mach number *2 *2 *( ) /M u v RT   , wave vectors: 

*cos( ),  sin( ),  / [( cos( ) 1) ].hi hi M hi RT          

The nonslip boundary conditions (v
*
=0) are imposed on the 

plate surface (PLCB) and the plate temperature corresponds to 

the adiabatic condition (∂T
*
/∂y = 0). Flow parameters on the 

surface ADLP were taken from a symmetry condition. Flow 

parameters on sides AEFB and DHGC were taken from a 

periodicity condition of a solution in z-direction. On the 

outflow boundary, the unknown variables are extrapolated 

from an internal domain. 

The computational domain consisted of two subdomains, 

which are divided from each other by the plane A'B'C'D'. The 

solution in a wall area (bottom subdomain) strongly changes 

 
Fig. 1 

 
Fig. 2 Diagram of the computational domain 
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along the coordinate y in comparison with a change in the top 

subdomain.  Therefore in the top subdomain, which height is 

A'E, the computational grid step on coordinate y (hy) may 

exceed the corresponding step in the bottom subdomain at 

several times.  The computational steps in z, x-directions may 

be identical in the both domains.  

It is supposed that free flow disturbances are rather small 

(A<<1) that the development of disturbances in all domains 

satisfies to linear laws. Disturbances are remained 

monochromatic on a time and a lateral coordinate.  

VI. RESULTS  

A. Stationary flow parameters in the boundary layer  

The calculations results of longitudinal velocity profiles at 

Mach number M∞ = 2, 110sT K , *
0 300T K  for different 

values of the normal injection parameter Cq are presented in 

Fig 3. Note, that approaching to value of velocity to unit is 

slowed with increasing injection rates. Thus one can clearly 

see that normal blowing leads to increasing of boundary layer 

thickens. Furthermore, an inflection point is appeared in the 

velocity profile which can contribute to destabilization of the 

boundary layer. 

 
 

Influence of blowing direction in the distribution of 

longitudinal velocity is shown in Fig. 4.  The velocity 

distribution without blowing is marked by symbols. From 

these data it follows that the stationary flow parameters are 

dependent on the tangential injection weakly. The normal 

velocity component plays a decisive role in this respect. 

B. Results on the  stability theory 

Main results were obtained on the basis of equations (5).  

Stability calculations were carried out by the classical theory 

(3)-(4) for processing of the settlement scheme (6). The 

rectangular mesh with 240 points in the X- coodrinate and 400 

point in Y- coordinate with the time step 0.001  was used. 

 As already mentioned, at large times the solution of 

equations (5) are described by an exponential dependence on 

will not dwell on the initial data which were set arbitrarily. the 

time, regardless of the initial data. Therefore, we 

  

 

 

 
Fig. 5 shows the time variation of the real part of the 

pressure amplitude near the wall, Y=0, when Y
*
=40. In the 

graph B the result is shown in the time interval 2000<τ<3000. 

Initial values of πr of the graph B increased in one thousand 
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Fig. 6 The dependence of the real part of the pressure 

perturbation on the coordinate X  

0 5 10 15 Y

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
U

Cq=0
Cq=-0.1
Cq=-0.2
Cq=-0.3
Cq=-0.4
Cq=-0.5

 
Fig. 3 Distribution of longitudinal velocities for various 

values of the parameter Cq 
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Fig. 4 Dependences of longitudinal velocities on the normal 

coordinate for the different λ.  

2000 2200 2400 2600 2800 3000
-0.003

-0.002

-0.001

-0.000

0.001

0.002

0.003

0.004

-0.015

-0.005

0.005

0.015

T

M=2, Re=1500, L=124A

B

r r*103

 
Fig. 5 The dependence of the real part of the pressure 

perturbation near the walls over time  
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times are shown on the top graph A, from which one can see 

that in the initial time moments there are several frequencies. 

However, over time the most growing frequency is allocated 

which changes under the law 0cos( ) ( )r iexp    . 

Fig. 6 shows the dependence of the real part of the pressure 

amplitude on space coordinate X at the two times analogously 

to Fig. 5. It is seen that at large times the spatial dependence is 

described by a harmonic dependence with the wave number 

2 / L    rather well.  

The necessary computational domain is determined 

empirically by comparing of the growth rates for different 

values of *Y with the data of the classical theory. From Fig. 7 

it is clearly visible that at the thickness  * 40Y  results of 

numerical modeling differ from data of the classical theory a 

little. 

 

 

 

 
 

Fig. 8 shows a change of grow rates depending on the wave 

number for various injection directions of at 0.5 qC   . The 

red line corresponds to tangential blowing and green circles 

marks represent the results without blowing. It is seen that the 

boundary layer stability increases with decreasing of the angle 

λ, and tangential blowing ( 0  ) does not affect the boundary 

layer stability. At the same time normal blowing can increase 

the rate amplification in several times. 

C. The numerical simulation interaction of a boundary 

layer with acoustic waves 

The results of the numerical simulation of the boundary 

layer interaction with acoustic waves were conducted for the 

Mach number M∞ = 2.0, Prandtl number Pr= 0.72, ratio of 

specific heats γ=1.4. The dependence of the dynamic viscosity 

μ
*
 on temperature was adopted in accordance with the 

Sutherland's law.  

 

 
The dimensions of the computational domain and its 

subdomains (Fig.2) were the following: AB=65mm, 

AA'=3mm, AD=2π/β. The plate PLCB was located at a 

distance of 5mm from the entrance side (AEHD) to the 

computational domain. So, the plate length was equal to 

60mm.  

At a fine-tuning of the calculated scheme the comparison of 

numerical results (NS) with data of the parallel flow theory 

(BL) at a low-frequency approach was carried out. Such 

comparison for the fluctuations amplitude of the longitudinal 
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Fig. 7 Dependences of the increments on the wave number for 

different thicknesses Y
*
 

 

 
 

Fig. 8 Dependences of the grow rates on the parameter  for 

0.5 qC    and 0 qC   
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Fig. 9 Distribution of the fluctuations amplitude of the 

longitudinal velocity related to its value at Y* = 10 (a) and 

maxima (b) 
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velocity related to its value on the boundary layer edge, 

Y
*
=y/δ=8, at hi = 0, Re=300, * *2 * -4/ 1.26 10F u       is 

given in fig. 9a.  Data of the numerical simulation was 

obtained at free stream parameters: M∞ = 2.0, * 0v  , 

* 5600p Pa  , * 164T K  .  In general, matching the results 

of the approximate method (based on stability equations for 

low-frequency fluctuations) with direct numerical simulation 

data is satisfactory. If to normalize solutions on the 

corresponding maxima (Fig. 9b), it is possible to notice very 

good coincidence of results near a wall. From this comparison 

it is possible to conclude, that the computational grid used in 

numerical simulation is good enough. The greatest discrepancy 

occurs in the area of the boundary layer edge where the 

approximation theory is inapplicable.  

 

 
The main results were obtained with the following 

computational subdomain grid. Both in the bottom subdomain 

and in the top subdomain (Fig.2) the number of nodes was 

1500 on x-coordinate, 300 on y-coordinate and 40 on z-

coordinate. 

In Fig. 10a the instantaneous contour of the full velocity 

perturbation induced by planar free-stream acoustic wave (F 

=10
−4

 and hi =0
◦
) is shown in the area between the surface 

plate and the top side of computational domain. This contour 

is shown more detail near the plate in Fig. 10b. It can be seen 

that at the some distance from the plate edge a periodic 

structure under shock wave coincides with the structure above 

the shock wave practically. It tells about a weak intensity of 

the jump created by a leading edge area of the thin plate.  
Within the boundary layer (Fig.10b) almost periodic 

structure on longitudinal coordinate with the period of a little 

biger in the comparison with the period near a jump is visible. 

It follows from this that the phase velocity of the perturbation 

exceeds value of 
*(1 1/ )e eu M , and it corresponds to eigen 

fluctuations (“Tollmien-Schlichting” waves) of a boundary 

layer [2]. Along with the strong change of the velocity 

perturbation intensity in the boundary layer the weak 

dependence of the perturbations amplitude in the area between 

the shock wave and the boundary layer edge is observed. 

Perturbations amplitude changing within this area is explained 

by the interference of an external acoustics with the acoustics 

which was created by the non-stationary boundary layer. 

 
 

The dependence of the maximum disturbance amplitudes of 

a full velocity ( * * *cos( ) sin( )u u hi w hi    ) in the boundary 

layer, U

max
A  on the Reynolds number at the different sliding 

angles is shown in Fig. 11 (F =0.445×10−4 ). At the small sliding 

angles perturbations amplitudes monotonously increases, at 

least up to Re=500. With an increase of a sliding angle 

(hi=30°) there is a maximum in this dependence. It is 

displaced to a leading edge of a plate with the increase of hi. 

The amplitude increase in the field of Reynolds numbers Re > 

450 is connected with the boundary layer instability. 

  
Finally, the dependence of maximum amplitude on the 

sliding angle at fixed positions x is shown in Fig. 12. 

 

 
 

Fig. 10 Instantaneous velocity perturbation contours induced 

by planar free-stream acoustic wave (F =10−4 and hi =0◦) 
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Fig. 11 Amplitude maximum of the full velocity in depending 

on a Reynolds number at different sliding angle 
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Fig. 12 Amplitudes maximum of the full velocity in depending 

on the orientation angle.  
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VII. CONCLUSION 

In the paper disturbances inside the boundary layer are 

investigated at a free stream Mach number of 2.0. 

 The new method of stability problem solving of the 

boundary layer is proposed, which is based on an evolutionary 

perturbations development in time. This method can be called 

by the usual term - the establishing method. In contrast to the 

generally accepted method of establishing when the solution 

goes to the constant, in our case the solution goes to the 

exponential dependence on time. This method allows 

determine parameters of a disturbance with the greatest 

increment.  

Influence of the gas blowing direction through a porous 

surface on the supersonic boundary layer stability was studied 

for the first time. In the contrast to the strong influence of 

normal blowing on the boundary layer stability, tangential 

blowing has a little effect on it.  

The boundary layer receptivity process due to the 

interaction of three-dimensional acoustic waves with a flat 

plate and the evolution of disturbances inside the boundary 

layer are investigated numerically. Both the steady and 

unsteady solutions are obtained by solving the full Navier-

Stokes equations using the ANSYS Fluent  software package  

The simulation data for low-frequency disturbances near the 

plate surface well agree with the approximate results which 

were obtained on a base of the equations of the classical 

stability theory. The greatest discrepancy occurs in the area of 

the boundary layer edge where the approximation theory is 

inapplicable. 

It has been found that interaction of sound with the 

boundary layer lead to an increase of the amplitude of 

disturbances inside the boundary. It has been shown that the 

amplitude of fluctuations inside the boundary layer may 

exceed the amplitude of the external acoustic field in many 

times and it depends on the parameters of the wave and the 

main flow. At a given position (Reynolds's number) there is an 

optimum sliding angle at which the maximum fluctuations of a 

boundary layer are excited. With increasing of the Reynolds 

number a critical value of a sliding angle decreases and the 

fluctuations intensity increases in a boundary layer. 

The simulation of interaction of acoustic waves with the flat 

plate shows that “Tollmien-Schlichting” waves are generated 

in the boundary layer.  
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